7.2
2) consider the function h defied by

$$
h(x)= \begin{cases}x+1, & x \in[0, \cap \cap Q \\ 0, & x \in[0,1] \cap(\mathbb{R} \mid \mathbb{Q})\end{cases}
$$

Shaw the ot h is not Riemann integrable
If: We use the Cancly Criterion to show that $h \notin R[0,1]$. The $\varepsilon_{0}=\frac{1}{2}$ Gwen $f>0$, consider tagged pattitom \dot{P}, \dot{Q} such that $\|\dot{P}\|,\|\dot{Q}\|<\delta$ but all the tags p_{i} for \bar{P} are rational, utile all the tags q_{j} for \dot{Q} are irrational. Note, we can always do this because the norm of the partition is independent of choice of taos.
Then note that since $h\left(p_{i}\right)=p_{i t} \mid \geqslant 1$, we lure

$$
\begin{aligned}
& S\left(h_{i} ; \dot{P}\right)=\sum_{i=1}^{n} h\left(p_{i}\right)\left(x_{i+1}-x_{i}\right) \geqslant \sum_{i=1}^{n}\left(x_{i+1}-x_{i}\right)=1 \text {, but } \\
& S\left(h_{j} \dot{Q}\right)=\sum_{j=1}^{m} h\left(q_{i}\right)\left(x_{i+1}-x_{i}\right)=0 \text {, so } \\
& \left|S(h ; \dot{\mathcal{D}})-S\left(h_{i} ; \dot{Q}\right)\right|=1 \geqslant \varepsilon_{0}>0 .
\end{aligned}
$$

So $h \notin R[0,1]$.
8) Suppose theist is continuous on $[a, b]$, the at $f(x) \geqslant 0$ for call $x \in[a, b]$ and that $\int_{a}^{b} f=0$. Prove that $f(x)=0$ for all $x \in[a, b]$.
Pf: Suppose for the Sake of contradiction thu if there is $a c \in[a, b]$ such that $f(c)>0$.
We first consider the case where $c \in(a, b)$. Then by continuity of fithere easts a $\delta>0$ such that for all $|x-c| \leqslant \delta$, then $f(x)>\frac{1}{2} f(c)$.

$$
\begin{aligned}
& \text { Then we calculate thu }
\end{aligned}
$$

Now suppose c is the endpoint a. Then again boy continuity, $78>0$ set. for all $x \in[a, a+8]$, then $f(x)>\frac{1}{2} f(c)$. Then the same
Calculation Shows

$$
\int_{a}^{b} f(x) \geqslant \int_{a}^{a+s} f(x)>\int_{a}^{a+s} \frac{1}{2} f(c)=\frac{1}{2} f(c)(f)>0 \text { which is again a contradiction. }
$$

When $c=b$ a similar argument applies.
9) Show that the Continuity hyporteris in the proceeding exercise cannot be dropped:
Pf: let $h(x)=\left\{\begin{array}{ll}1, & k=0 \\ 0, & x \neq 0\end{array}\right.$ when h is discentinu \quad ans at 0 ,
but me can also show that $\int_{0}^{1} k=0$. let $\varepsilon>0$ be given. Take $\delta=\frac{\varepsilon}{2}$ Then consider any tagged partition \dot{D}^{j} with $\|\mathcal{P}\|<\delta$. We have 2 cases:

Case 1: firstag $t_{1}=0$. Then since $t_{j} \neq 0$ forall $j>1, h\left(t_{j}\right)=0_{\text {and }}$ Then $\left|S\left(x_{i j} \dot{p}\right)\right|=\left|\sum_{i=1}^{n} h\left(t_{i}\right)\left(x_{i+1}-x_{i}\right)\right|=\left|h\left(t_{1}\right)\left(x_{2}-x_{1}\right)\right|$

$$
=\left|k_{2}-x_{1}\right|<\delta=\frac{\varepsilon}{2}<\varepsilon .
$$

Case 2: none of the tags are 0 . Then $h\left(t_{i}\right)=0$ forall; and

$$
\left.|S(h ; P)|=\left|\sum_{i=1}^{n} h\left(t_{i}\right)\right| x_{i+1}-x_{i}\right) \mid=0<\varepsilon
$$

So $\int_{0}^{1} h=0$.
Alternatively take h to be Thonad's function and proceed as in Example 7.1 .7 as in the textboole. /.
11) If f islounded by M on $[a, b]$ and if the restriction of f t every interval $[c, b]$ where $c e(a, b)$ is Reran integrable, show the st $f \in \mathcal{R}[a, b]$ and this $\int_{c}^{b} f \rightarrow \int_{a}^{b} f$ as $c \rightarrow a^{+}$
Pf: We'll use the Squeeze theorem 7.2 .3 in the textbook. Let $\varepsilon>0$ be given. In the untation of that theorem and following the hist provided, take

$$
\begin{aligned}
& \alpha_{c}(x)= \begin{cases}-M, x \in[a, c) \\
f(x), x \in[c, b]\end{cases} \\
& \omega_{c}(x)=\left\{\begin{array}{ll}
M, & M \in[a, c) \\
f(x), & x \in[c, b] .
\end{array} \quad-M=\frac{w_{c}(x)}{} f(x)\right.
\end{aligned}
$$

Then by the additivity Theorem $(7,2.9)$, both $\alpha_{c}, w_{c} \in \mathbb{R}[a, b]$ since content functions $-M, M \in R[a, c]$, and $f(x) \in R[c, b]$ by assumption Moreover, we have
$\alpha_{c}(x) \leqslant f(x) \leqslant \omega_{c}(x)$ for all $x \in[a, b]$ ane

$$
\int_{a}^{b}\left(\omega_{c}-\alpha_{c}\right)=\int_{a}^{c} 2 M+\int_{c}^{b}(f(x)-f(x))=2 M(c-a)
$$

${ }^{a} a b i n c$ close enough to a so that $c-a<\frac{\varepsilon}{2 M}$, we get $\int_{a}^{b}\left(\omega_{c}-\alpha_{c}\right)<\varepsilon$ Then by the Squeeze Thooem, we can conduce

$$
\left|\int_{a}^{b} f-\int_{c}^{b} f\right|=\left|\int_{a}^{c} f\right| \leqslant M(c-a)<\frac{\varepsilon}{2}<\varepsilon \text {. So } \int_{c}^{b} f \rightarrow \int_{a}^{b} f \text { as } c \rightarrow a^{+} \text {. }
$$

12) Show thect $g(x)=\left\{\begin{array}{cl}\sin \left(\frac{1}{x}\right), & x \in(0,1] \text { belongs ts } R[0,1] \text {. } \\ 0, & x=0\end{array}\right.$.

If: We can use the previous problem. Note the nt $|g(x)| \leqslant 1$ for all $x \in[0,1]$. So gis bounded on $[0,1]$.
Moreover, since g is continuous on every interval $[c, 1]$ for all $c \in(0,1), g \in R[c, 1]$ (ann 7.2:7), Then by the previous problem) $g \in R[0,1]$.
18) Let f be continuous on $[a, b]$, let $f(x) \geqslant 0$ for $x \in[a, b]$, and let $M_{n}:=\left(\int_{a}^{b} f^{n}\right)^{1 / n}$. show the nt

$$
\lim M_{n}=\sup \{f(x): x \in[a, b]\}
$$

Pf: Let $M:=\operatorname{sep}\{f(x): x \in[a, b]\}$. Since f is continuous and $[a, b]$ is compact, f achieves M at some point, say $p \in[a, b]$.
ie $f(p)=M$. By contmuity of $M, \forall \varepsilon>0 \quad \exists \delta>0$ sit.
for all $x \in(p-\delta, p+\delta)$,

$$
M-\varepsilon \leqslant f(x) \leqslant M
$$

Then integrating, we heme

$$
(M-\varepsilon)^{n} 28 \leqslant \int_{p-f}^{p+\infty} f^{n} \leqslant \int_{a}^{b} f^{n} \leqslant M^{n}(b-a)
$$

Then taking $n^{\text {th }}$ root, we heme

$$
(M-\varepsilon) 2^{g^{1 / n}} \leqslant\left(\int_{a}^{b} f^{n}\right)^{1 / n} \leqslant M(b-a)^{1 / n}
$$

Note that for any $r>0, \lim _{n \rightarrow \infty} r^{1 / n}=1$ since $\lim _{n \rightarrow \infty} \log \left(r^{\frac{1}{n}}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \log (r)=0$ and using contivinity of \log
on R_{+}and by on R_{t} and by taking exponential.

So tali limits, we get

$$
M-\varepsilon \leqslant \lim _{n \rightarrow \infty} M_{n} \leqslant M
$$

Smie this is true for arbitrary $\varepsilon>0$, we can conclude $\lim _{n \rightarrow \infty} M_{n}=M$.

